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Abstract

T'his paper presenis a simple on-line approach for mo-
tion co nirol of rover-mounied manipulators. An inte-
grated kinematic model of the rover-plus-manipulator
system is derived which incorporates the non-h elonomic
rover constraint with the end-effector task. The re-
dundancy introduced by the rover mobility is exploited
to perform a set of user- specified additional tasks dur-
ing the end-effector motion. The configuration con-
trol approach is utilized to satisfy the non-holonomic
rover constraint, while accomplishing the end-e fJector
motion and the redundancy resolution goals simultane-
ously. This framework allows the user to assign weigh {-
ing factors to the rover movement and manipulator mo -
tion, as well as to each task specification. The computa-
tional ¢fficiency of the control scheme makes it particu-
larly suitable for real-time implementation. The pro-
posed method is applied to a planar two-jointed arm
mounted on a rover, and computer simulalion resulls
are presented for illustrational

1 Introduction

In recent years, path planning and motion control of
mobile robots have been active areas of research [see,
e.g., 1-13]. When the base mobility is provided by a
track, a gantry, or another robot, the kinematics of
the base platform has holonomic constraints similar to
the kinematics of the manipulator itself; thus the base
can eflectively be treated as additional revolute or pris-
matic joints of the manipulator [6]. On the other hand,
wheeled mobile platforms,such as rovers, arc subject
to non-integrable kinematic constraints, known as non-
holonomic constrains. Such constraints arc generally
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caused by one or several rolling contacts between rigid
bodies, and reflect the fact that the mobile platform
must move in the direction of its main axis of sym-
metry. A rover is a typical non-holonomic mechanical
system. It can attain any position in the plane of mo-
tion with any orientation; hence the configuration space
is three- dimensional. However, the velocity of motion
must always satisfy a non-holonomic constraint; thus
the spac e of achievable velocities is two-dimensional.

In this paper, the configuration control methodology
developed earlier [14-1 5] for redundant robot control is
extended to motion control of rover-l nounted manipu-
lators. ‘The non-holonomic kinematic constraint of the
rover fits naturaly in the configuration control formu-
lation. The non-holonomic rover constraint, the desired
end-effector motion, and the user-specified redundancy
resolution goals are combined to form a set of difler-
ential kinematic equations. These equations are then
solved 1 o0 obtain the required rover and manipulator
motions.

2 Kinematic Analysis of Rover-
Manipulator System

In this section, wc develop a fully integraled kinematic
representation of the rover and the manipulator, rather
than tre sting the rover and the manipulator as two sep-
arate entities.

2.1 Non-holonomic Rover Subsystem

Consider a front-wheel-drive four-wheeled rover. The
rover is represented by atwo-dimensional rectangular
object t randating and rotating in the planc of mation,
as illustrated inFigure 1. Let F'(x;,ys) denote the
midpoint between the two front wheels and Ie(x,, yr)
represent the midpoint between the two rear wheels of
the rover, where the coordinates arc expressed with re-
spect to the fixed world frame {W} with axes (0z,0y)




shown in Figure 1. The rover configuration iS param-
eterized by the 3 x 1 vector p =[z;,y;,¢]", where ¢
denotes the orientation of the main axis of the rover
relative to the z-axis of the world frame.

Assuming a pure rolling contact between the rover
wheels and the ground- i.e, no dipping. - the velocity
of point /¢ is always aong the main axis of the rover.
Hence, we have

Tp = Acos ¢ ; yr=ASne (€0}
where ) is a scalar. Eliminating A,, we obtain
Zpsing— Yrcos =0 2

Equation (2) can be expressed in terms of the coordi-
nates (z;,yy) of the front point #* on the rover. The
coordinates of the rear point f¢(z,,y,) and the front
point F*(x,y,) arc related by

xy=a,p4leosd 5 yp =y 4 lsing (3)

where ! denotes the distance between K and F', i.e, the
rover length. ‘1'bus, the velocities of R and I are related

by
Ur = gr -+ ldcosd (4)

From equations (2) and (4), we obtain the following
non- holonomic kinematic constraint

Ey= By — 1l sin ¢ ;

Zysing — gy cos ¢ Hl=0 (5)
or, in matrix form
[sing -- cos ¢llp =0 (6)

where p = [i:f,yf,¢]7~ Equ at ion (6) rcpreseuts a nat-
ural constraint that must be satisfied by the velocity
vector p, [7]. Note that equation (6) is a special form
of the non-holonomic constraint

G(p)p =0 @

where G isav x n matrix and p isthe n x 1 vector
of generalized coordinates of the systern. A Kinematic
constraint of the form (7) is caled non-holonomic if it
is non-integrable; i.e, ¢ cau not be eliminated and the
constraint (7) can not be rewritten in terms of g aone in
the form #/(¢)= O. Otherwise, the constraint is called
holonomic.

Now, the control variables of the rover arc thelinecar
speed v Of the front wheels and the steering angle ¢
between the front wheels and the main axis of the rover.
The control variables [v, 7] arc related to the velocity
variables [/, y;, ¢] by

Ty = wvcos(¢+7)

yr = vsin(d ) (8)
\ v
¢ = 7 siny

where the third equation is derived from the first two
andthe constraint (6). Given (2;,yy,¢), the rover
speed » and the steering angle ¥ are found from equa-
tiou (&) as

1
v = :?:[:i‘} -+ y}] S Y =

We conclude that at any configuration (z;,yy,¢),
the space of velocities (z,y;,¢) achievable by the rover
is restricted to a two-dimensional subspacc in view of
the constraint (6). Thisimplies that the velocity vector
p is comnpletely determined by the configuration vec-
tor p and, say, 2yandy;. Notice that the achiev-
able configuration space (x;, ¥y, ¢) of the rover is three-
dimensional, i.e., iS completely unrestricted.

2.2 Holonomic Manipulator Subsystem

For simplicity of presentation, we consider a planar
two-link manipulator arm mounted on the rover, as il-
lustrated in Iigure 1. However, the methodology pre-
sented in this paper is gencraland is equally applicable
to any type of n-jointed rover-mounted manipulator.

Let 0, and 0, represent the joist angles and {; and I,
denote the link lengths of the manipulator arm. Con-
sider a moving vehicle frame {V} with axes (F&, F'g)
attached to the rover at the front midpoint /. Let
the posit ion of the manipulator’s end-eflector £ be the
primary task variable of interest. ‘Jhen, the Cartesian
coordinates of # with respect to the vehicle frame {V}
can be expressed as

&3
)
!

ly cos 0y -+ 1y cos(0y -+ 02) (10)
lisinfy -+ 1y sin(01 -+ 02)

The end-effector position coordinates X, = [z, .|
relative to the worldframe {W} arc given by

Ze =

ye o

zy+ 1 cos(0y 4 @) + Iy cos(0y + 05 + @)
yr + L SiI|(01 -+ tf)) + 1y sin(01 + 8 -+ (f))(ll)
From equation (1 1), the Cartesian velocity of the end-

eflector in {W} is related tothe rate-of-cllauge of the
configurate ion variables as

g = gy~ 1(0) 4 ¢)sin(0; + @)
—1(01 4 03+ $)sin(0; + 05 + ¢)
Ye = Y5+ 0L(0) + ¢)cos(0) + )

Hy (01 + 04 -+ ¢) cos(01 + 02 + ¢)  (12)



or, in matrix form

. X
I 0 Jois JmM *12 sn 0120 ¢) _ \,
O 1 Jm2zJdmaalz sin iz 0 T e

(13)
where Jymis=Jmia = =l sin 010 — {2 sin #120, Jm23 =
Jm?“z-—l] cosfyg + 1y COSO]QO 010:01 + ¢, 0190 =
01+ 0,+ ¢, and 0= [0, 02]""is the 2 x 1 manipulator’'s
joint angle vector. Equation (13) can be writtenin the
compact form

Jm(q)d = X, (14)

where J,,, (9) is the 2 x 5 manipulator’s cnd-effecter Ja-
cobian mat rix, and g = [p”, 071" = [, ys, ¢, 01, 0)7
isthe 5 x 1 configuration vector of the rover-mounted
manipulator system. F.quation (]4) represents a holo-
nomic kinematic constraint since it can be expressed as
the position constraint 77(q)=0 in the form of equation
(12).

We conclude that the kinematics of the rover-
plus-manipulator system can be modeled as the non-
holonomic rover constraint

Jr(g)g=o0 (15)

where J;(g)== [G'(p) :0], together with the holonomic
manipulator constraint

In(9)d= X, (16)

Equations (15) and (16) are combined to obtain the dif-
ferential kinematicmodel of the integrated rover-plus-
manipulator system as

[iﬁg]qz[ﬁf] (a7

where the dimensions of ¢and[0, X7]" are n= 5 and
mz= 3, respectively.

3 Motion Control of Rover-
Manipulator System

In this section, the configuration control methodol-
ogy developed earlier [14-15] for redundant manipula-
tors is extended to motion control of the rover-plus-
manipulator system.

Consider the integrated rover-plus-1nanipulator sys-
tern. The integrated systeminequation (17) is kine-
madtically redundant with the degree-of-red undancy » =
11- m=2. Inthe configuration control approach, the

redundancy is utilized to accomplish additional user-
specified tasks by direct control ofasetof r user-defined
kinematic functious

Z =90 (18)

while controlling the end-effector motion, where # and
g are r x 1 vectors. The additional task variables
can be expressed in the velocity form

J(q)i =2 (19)

wherc.]c:-gg is the » x n Jacobian matrix associated
with the kinernatic functions Z.0n combining her over-
plus-y manipulator constraints (17) and the user-specified
additional task variables 9), we obta

J,-(a) 0
I (Q) q = Xe (20)
J.(q) A

or, In matrix forin
J(g)g =X (21)

Where J(q) is the composnte nxn Jacoblan matrix, and

------

Supposc that the desired end-effecter Vclocxty XNae
and the desired rate-of-variation of the kinematic func-
tions Z4 arc specified by the user. Then we need to
solve the augmented differential kinematic equation

J(q)q = Xq (22)

for 9, where X4 =0, X1, 2317 To avoid large ve-
locities ¢, the user can impose the velocity weighting
factor W, = diag{W,, W} on {p,0}, and attempt
to mininize the weighted sum-of-squares of velocities
Il 2 My, + 1 0 lw ., In addition, the user can as-
sign priorities to the end-effector moation, the additional
task requirements, and the non-holonomic rover con-
straint by sclecting tile appropriate task weighting fac-
tor W = diag{W,,W,, WC}, and seek to mmmn/e the

£, “W 4l E, HW , where By = Jog, Fle = Xae — /\
and F.:%4— 7 are the non-ho) onomic rover, end-
effector, and additional task velocity errors, respec-
tively, Hence, we seek to find the optimal solution of
equation (22) that minimizes the scalar cost function

L=p" W, p46T Wy 04 1T W, B+ EY we Eo+ ET W I,

(23)

The optimal damped-least-scluares solution of (22) that
minimizes (23) is given by []5]

¢=[2Tw,J

A W T IT WL X (24)

~—




This solution is singularity-robust for W, # O, since the
matrix inverted is always positive-definite and hence
non-singular.  Note that in the special case where
W, = O, equation (24) gives ¢=J X4, assuming
det[J] # O, which is the classical inverse Jacobian so-
lution. To correct for task-space trgjectory drift which
can occur in differential kinematic schemes, we intro-
duce the actuel configuration vector X in equation (24)
as [15]

= [JTW + W, )T IT WX + K(Xa - X)) (25)

where K isan nx n constant diagonal matrix with zero
or positive diagonal elements. Notice that for the non-
holonomic rover constraint, the appropriate elements of
X and X4 arc set to zero since the constraint is non-
integrable. The numerical value of K determines the
rate of convergence of X to Xq4.

Let us now re-visit the two-jointed manipulator arm
mounted on the rover as illustrated in I'igure 1. There
arc five degrees-of-freedom and only two end-effecter co-
ordinates to be controlled and one non-holonomic rover
constraint to be satisfied. Therefore, two additional
configuration _dependent. kinematic functions 21 () and
z2(¢) can be specified and controlled independently of
the end-effecter motion and the non-holonomic rover
congtraint. For the sake of illustration, we choose the
rover orientation ¢ relative to the world frame and the
manipulator elbow angle ¥ between the upper-arm and
forearm as the additional task variables. Hence

2(q)=¢ ;  z(q)=1+= 180 °- & (26)

or, in velocity form

00100

oooo—l]‘i:[d}d} 127)

Va

where ¢ = [é:,_,g,',é),01,0217', and ¢4 and ¥4 are the
desired rate-of-variationof ¢ and 3, respectively. On
combining the rover-plussmanipulator model (1' ) with
the additional task specifications (27), wc obtai

sing — cos ¢ 1 0 0 -| ay .0
1 0 Jos Jaa Jos | oy Lde
0 1 Jaz Jzq4 g sf) B l.llde
0 0 1 0 0 6, da
0 0 00 -1]]a da
(29)
where Jos= J,= -1 sin 010 -- 2 sin 01205 J33 =
Jaa =1y cos 010 -t I3 cos0y20; J25 = — 12 sin 01205 Jas =

I3 cos0120; 010 = 014 ¢; 0120 == 01 + 02 + . Note
that (28) embodics the non-holonomic rover constraint
(5). Kquation {28) represents a set of five equations in

the five unknown clements of ¢ that can be solved us-
ing the damped-leas-squares configuration control ap-
proach described earlier in this section. By direction
calculation, the determinant of the 5 x 5 augmented
Jacobian matrix appearing on the left-hand side of (28)
is found to be

det[J] = 1y cos Oy-+l2cos(0y + 02) = &, (29)

Therefore, Jis non-singular and (28) can be solved ex-
actly provided that.7 O; i.e, the end-eflector I does
not lie onthe F'y axis of the vehicle frame {V}.

Now, suppose that the rover lengthis{=20cm and
the link lengths are {;= 1,= 10cin.Let the initial
configuration of the rover-plus-manipulator system be
given by

q' == {2y = 30em, y; = 15cm, ¢ = 0°, 0, = —75°,02 == 150"}

This yields the initial task vector
Xi: {17e =35.18 cin, Ye == 15em, ¢ =0°, Y = 30°}

Suppose that tile desired fina task vector at time r= 1
second is specified as

X7= {z.= 65.18 cm, y.=45¢cm, ¢ = 30°,4 = 90°}

This corresponds to a rapid cnd-effecter motion of
{(Awe)~+(Aye)2}%;,42.4cm in one second. Notice
that the target end-eflector position is not attainable
without rover motion. Task-space motion trajectories
are specified as straight-lines; for instance

. N4 LE
= [ B e
za(t) = { ! , fort>r (30)

where (2*,29) arc the initial and final values and 7 is the
duration of motion. Similar trajectories are specified
for ya(t), ¢a(t), and ¥a(1). Thesetrajectories produce
a straight-line end-effector motion in Cartesian space
from (2%, yi)to(2f, y{). Notice that the target elbow
angle ¥ = 90¢ gives maximum end-cffector manipula-
bility at the final configuration.

A computer simulation study is performed to cal-
culate the required configuration variables ¢(t) =
{z(1), ys (1), $(1),0:(1),02(t)} to accomplish the tasks
of cnd-effecter motion, and ¢ and ¥ control, while
satisfying the non-holonomic rover constraint. In
the simulation, we set. 7 = 1, At = 0.01, W;=
diag{1,1,1,1,1}, W, = diag{0, O, O, O, O}, and K =
diag{0, 0.1,0.1,0, O}. The simulation results are shown
in Figures 2a-2b. The path traversed by the end-effector
Fisshownin Figure 2a It is seen that the end-effector
moves on a straight line from (2%, 4%) to (24,4 ), as



specified. Figure 2b verifies that the rover orientation
¢ and the elbow angle ¢ change from their initial val-
ues to the specified final values on straight-lines in one
second, as desired. The non-h olonomic rover constraint
function f=2;sin ¢ -- yycosd+ ¢l is computed and
found to be equal to zero throughout the motion; i.e.,
the rover constraint, is satisfied. Note that the required
rover speed v and steering angle 7 can be computed
from equation (9).

4 Conclusions

A simple scheme is presented for on-line control of
rover-mounted manipulators. The configuration control
approach is extended to incorporate the non-holonomic
rover constraint with the desired end-eflector motion
and the user-spccified redundancy resolution goals. The
key advantages of the present approach over the previ-
ous schemes arc its flexibility, simplicity, and computa-
tional efficiency. The ability to change the task specifi-
cations andthe task weighting factors on-line based on
the user requirements provides a flexible framework for
mobile robot control. Furthermore, in contrast to pre-
vious approaches which arc suitable for oft-line motion
planning,the simplicity of the present approach leads
to computational efliciency which is essential for on-line
control in real-tilnc implementations.
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Figure 1. Rover-mounted manipulator
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Figure 2b. Variations of the rover orientation ¢ &nd elbow angle



